LITTORAL COPEPODA from SOUTH AUSTRALIA

 (i) HARPACTICOIDA

 (i) HARPACTICOIDA}

By A. G. NiChoLLS, Ph.d., University of Western Australia.

Fig. 1-23.
Trae collection of littoral copepods in the South Anstralian Museum has been sent to me for examination, and I am indebted to the Director of the Musemm, Mr. H. M. Hale, for this opportunity of studying them.

This collection comprised 15 tubes, divisible into two categorics: Λ, samples takell by townet; and B , shore collections and dredgings. One of the former was taken at night, a light being used to attract animals, and so might be expected to contain bottom-living as well as planktonic forms. All of the collections were made in Sonth Australia in the region of St. Vincent and Spencer Gulfs, with one exception from a salt lake at Beachport, with which we are not concerned at present.

The samples listed below, althongh divided into the two catcgories mentioned, are nmmbered consentively, and these nmmbers are used in defining the occurrences of each species deseribed.

A. Townettings.

I. Smitlı Bay, Kangaroo Island, from 8.0-8.15 p.m., 15/3/38; contained Calanopia thompsoni only.
II. Western Shoal, on the west side of Spencer Gulf, at 8.30 p.m., 20/2/38 (Calanoids and Harpacticoids), by K. Sheard and F. W. Moor'house.
III. Blanche ILarbour, at the north end of Spencer Gulf, 8.30 p.m. $8 / 3 / 38$, by K. Sheard. (Mainly Calamoids, a few Harpacticoids.)
IV. Wallaroo Marbour, on the cast coast of Spencer Gulf, at 8.15 p.m., 26/2/38. "Light shone on water from deck for 7 minutes, then townet hauled vertically." (Mainly Calanoids and one Peltidiid.)
V. Spencer Gulf, Eastern Shoal, mid-day haul, 4/3/38. (Calanoids only.)
VI. Beachport, on south-east coast of S. Australia, from a salt lake. (Calanoids and Ostracods only.)
B. Sifore Collections and Dredgings.
VII. Moonta Bay, Spencer Gulf, from a weed-covered reef exposed at very low tide; coll. B. J. Weeding, Feb., 1939. (Calanopiu thompsoni, Peltidiids, Laophontid, Amphiascus sp.)
VIII. Port Wilhnga, from southern face of reel in one fathom at low tide: (oll. II. MI. IJale and K. Sheard, 17/1/37. (Peltidiid.)
[X. Sellick Bach, to the sonthol Port Willunga, from a stome in tive fed of water at low tide on south edge of reet; coll. H. M. Hale, 81/1/37. (Calumopier thompsemi, many Itarpacticoids and some Cyelopoids.)
S. Sellick Beach, from Camhriau Rocks in one fathom at low tide: coll. II. M. Hale, 13/2/37. (Nomerons Hapmoticoids and Cyelopoids.)
 pacticoids and Cychopoids.)
XIt. Sellick leach, coll. Ř. Sheart, April, 1939. (Nomeroms Harpacticoids. and Cyelopoids.)
XIll. Sollick Reef, coll. K. Shemt. April, 1989. (Some Calanoids, mmerons Harpactieoids and Oyelopoids.)
 somi, Harpacticoids and Cyclopoids.)
XV. Reeveshy Islant, Sir Joseph Banks group on the western side of Spence:
 Cottom, $7 / 12 / 36$.)
Dissections have been made of all the speces deseribed in the following pages.
 indigo-carmine wos nsed for staming in every case, and Monk's (1988) Medinm and Eupanal for mombing. This mothod is rey ennenient, and the stan is most dfective for chition, as stated byonk.

1 anm indebted to Ar. K. Sheard, of the South Anstralian Musemm, for valuable arfvice and help in momenclatorial mathers, in which eomection I hare atso re-
 tratia, to both of whom 1 offer my best thatus. It is a platisure here to express mat thamk to the Tonstees of the Seicnce and Indestry Endowment Fund tor a giant chabling me to purehtase a diskedinge miernsenpe, which has hern of the wreatest 11sp in barying out this work.

NOTES ON THE DHSTRIBITTION OF SPECIEN.

There is litta to bemark apon concerning the distribution within the area from which the eollections were made. sine ath those from the show, where liarpactionds are moreabmatant, were taken in a comparatively small requm exteming for about 10 miles or so along 1 he coast, ahont :30 to 40 miles smath of Aidelaide.

The distribution ol those species which base previonsly been recordal is, how. (ver, of interest. In emmal, the harpacticoid lamat of this revion shows ate
lationshig with that of Coylen and the Malay Ardipelagen, tha Red Sma, Mpetiter-

 romuta. C'eylowidlu armata and Metis jousseumeri.

 rym from Now Zatand.

Famity Longipeditidat Sars 1903.

The exemos comprises swom speces. 10 which is added an mighth fiom his collection.

Nev rotar Fradas.

 Iomgispimu Monard 192s.
 Finl summent of seemed molopod with omer apine the mest proximal .. 6.
 spium

 bevond the ealldal rami .. . minw 'T. \& A. Seott 189:3.

 beyond the candal lami mebrui Λ. Sont 190日.

 sirla
brarpinosu (imbev 1!92す).
 with median spind extemding beyond ribulal rami and with 1 large and 4 small donticles on rach side
xrolli Saws 190!?

Longipedia coronata Clans.

Ocemrence: 11,2 females; XTI, 1 fmale.
Distribution: Widely distributed on the shores of the North Sea, North At lantie, Mediterramean, and Suez Canal, atso taken at Ceyton, Nicobar Ishads. Chilka Jake, and Malay Archipelago.

Fig 1. Lomitiperian emmatu Clane, femate.
This species is very variable, as has heen shown by Gmoney (1927b), and the spectimens taken in these collections dilfer slighty from ather forms (fig. 1), but there is little dombt that they should be refered to this species.

The most variable beature is size, which ranges from $0 \cdot 561 \mathrm{~mm}$. to 1.3 mm . ; specimens fomm here measmed about 1 mum.

Longhema austrahata sp.mov.

Ocmirence: 11.2 femates; XII. 2 females, 1 mate; XIV, 1 lemate.
Female: Length 1.1 mm , to 1.3 mm . This form resembles L. sertif in many respects, and minht well be relered to that species but for some striking differenees in the male. In the female the chief difference is in the shape of the fifth lex. The armature of the operculum is much as in scotti. The relative position of the spines on the end segment of the second endopod is somewhat different in anstratira, but: in another specimen examined the positions were such as in seotti. The imner seta on the basal segment of the seeond andopod is quite shom in seotti, and of a much greater length in the species fomed here (hig. 2).

The shape of the fifth leg in the form deseribed as L. seolli Sars, by A. Seott (1909) and the very much lomger setar, both on the basal segment of the second endopod and on the fifth leg, suggest that Seot1's fonm is referable to the species despribed here. He is necessars that the mate of his species should be fomed to be erertain.

Fig. 2. Longipertia anstralica sp. nov., male :md female.
Mate: Length 0.96 mm . In the first antenna the swollen fifth segment is ahmost as wide as lomg, and bears seremal hook-like spines on its outer margin. These were not sem in scotli (Nicholls, 1935, p. 4:3), and the fith segment is hatf as long again as wide. The better devolopment of the setge on the basal segment of the second molopod and fifth legs also forms a distinctive feat ture of this species.

In the males of this gems the tong sequent of the second endopod bears only two spines (romonnlm appears to be an exception), and it is wortls moting that in both: scolli and atstrolice it is the outer spine which disappears.

Family PFLTIDIIDAE Sars 1904.

The family is represented hore by ther genera, All whth, Irflidizm and Parapellidium. Numerieally the material is very rich.

Lang (1936e, p. 30) sngesests that Darlylopusin platysomu Thompson and Seott (190:3) is a Peltidida and not a Thatestrid, but if it is excluded from the latter family by the swimming laws and fattened body it is equatly excluded from the Pellidiadne by the first legs. It ippeass to be intermediate and shombld perhaps the placed in a separate family.

The gemus Parapellidrum was established ber A. Scott (1909) for one specinen which differed trom Peltidinm in the prsseession of a nanrow endopod to the first, legs and in having the two segmonts of the fith leg eompletely fused. As regards the first condopod this condition is requrder an being at mate characteristice (see below), and has therefore no taxonomic value. The highly chitinized, fused fifth legs may be distinetive, and were fond in two of the speries taken here, which
 Parapeltidium, johnstoni Scott is not on' genmie valme aither, since it finds a parallel in Peltidium amrinillii (Clew).

Kry mo Peltmmae,

1. Body with anastomesimp chition binds 2 . Body without such bimils
 Fifth leg 1-segmented P'armpellidinm A. seot1 1909.
2. First embopod B-segmented 4. First endopord 9 -segmented
3. With keng-semmented first expon with 2 or more terminal claws.

Allomlta Baird 1845.
Fifth leg 1 -segmonted ; firs exoporl with single latwe terminal anw. . Illomliolla A. Scott 1909.
万. Rami of first lege subeyual . .
Exopod of first leg twice as long as endopme - . . Buphlle Clatus 1860.
6. Basal segments of first leg linear, at right anoles, pami long and slemer.

Parolleuthi' T. Scot1 1912.
Basal segments of first log as wide as long, mani short and stont.
Eupellilizm A. Scot 1909.

Afreutia Baird 1845.

The following species have been assigned to this genns:

```
aborons Czerniavski 1868,
austrina T. S'cott 191.
Nemessu Baird 1845,
dubia T. Scott 1912,
interruptu (Goodsir) 18t5,
messimensis Clams 1863:
nama. Brady 1910,
monuc-zeulambluc (Brady) 1893
```

```
purpurocimeta Norman 1868.
sarsi Monard 1924.
signuta Brady 1910,
triarliculutum (Haller) 1579,
Wisotosa Lang 1936e,
lypicu Czorniavski 186s,
villosu Brady 1910.
```

Of these triarticulatum (Haller) is insufficienty deseribed; of wherrans and IIfica I have not seen the deseriptions, and these species are therefore not inctuded in the key given below. Aecording to Monam (193ma, p. 73) typica is probably a Synonym of messinomsis Clans. A. viltose Brady should cleaty he transfered ion Scott's gemas Perullemthe.

Acording to Kars (1911, p. : $: 60$) the species destribed by him (190t) as fepressm Baid stould have beet identified as permerorencle Norminn, and since 1 have not seen baird's original description, foppesse has alsu been left out of the key.

Key to Mitlutha Females.

1. Size $0 \cdot 4$ mm.

Sizo at least 0.6 mm
?. Exopod of second antemas 2-segmented \quad.. 2.

3. Basal segment of fonth exoporl with imer seta 4. Basal segment of fouth exoporl without imer sela .. $\quad .$.
4. Eud segment of fyurth exoporl with 2 outer spincs.
movele-zalnadiae (Brady) 1899.
End seyment of fourth exoporl with:t outer spines 5.
i. First antenna 7 -segmented spinicauth sp.nov. First antema S-seqmented. $\quad . \quad \begin{aligned} & \text { intermplu (Goodsir) } 184.5 .\end{aligned}$ First antema 9-segmented . $\quad .-\quad \cdots \quad . \quad . \quad . \quad . \quad . \quad 6$.
6. Distal segment of filth leg 3 times as long as wide . . signta Brady 1910. Distal segment of filth leg twice as long as wide . . sarsi Momard 1924.
7. Midde segment of fourth andopod with imere seta 8. Middle sagment of fonth andopod withont imer seta enstrime' 'T. Seott 1912 .
8. Lasal segment of fifth leg with immer cxtensiou 9. Basal segment of fifth leg withont inmer extension purpurocinctu Nomanis68.
9. Cambab sami with fomr temmal setae . . . Iubio T'. Seott 1912. Candal rami with: terminal setae trisetosa Lann 1926e.

Alteutha spinicauda sp.nov.

Occurrence: XI, 3 females (1 ovigerons); XII, 1 mate.
Female : Length $0 \cdot 72-0.75 \mathrm{~mm}$. width 0.89 mm . First antema 7 -segmented, with sensory filaments on third and fourth; second antema with 2-segmented

 the male, other mouth parts from the fomate.
exopod; mandible palp bilobed; maxilliped well developed, with long claw. First legs with 2 -segmented copod with: terminal elaws, endopod 3 -segmented; legs 2-i with following seta formula:
cudoporl. exopod.

p.2.	1.2 .221.	1.1 .223.
p.3.	1.2 .321.	1.1 .323.
p.4.	1.2 .221.	1.1 .323.

Fifth legs of natal shape. Cantal man wider than long, with large spine at outer corner (fig. 3).

Mile. Length 1.0 mm ., width $0 \cdot 48$ mm. First antemin 7 -segmented and somewhat modified first logs with terminal portion of exopol, bearing claws, distinctly separated from con segment. Lo ms $2-7$ as in female, but outer spines of fourth exopod modified on first and second segments: fit th legs strongly chitimized. with spines only, no setae. Caudal rani as in female.

This species differs from all but mun in having only 7 segments in the first antenna ; the filth le as are not make those of meme, allowing low the spines to have hern broken in bratty specimen, but the shape of the body and much er eater size preclude this species from identity with Brady's.
: Aleqeotha signata brady 1910.
Oemmence: 1X. 1 ovigmous female, 1 mate.
Distribution: Kerentlen (Bratty 1910, p. nita, pl. lxi, 10-18).

Fig. d. ? Alfollhe signal u Brady, male and female. The female 5 the leg is shown in two postbonus, and like that of the mate is strongly chitiuizerd

With 3 -segmented rama ; setae of legs e- 1 cattle as in spimicoud (above) ; caudal rani at least as long as wide, armed with setae only.

Mate: First antemal 8 -segmented. slightly! modified; second anteman with 2 .
 filth legs strongly chitinized. with spiles and setae; sixth legs represented by a single spine ; caudal rani as in female.

This species is ahost certamly that deseribed by Traity as sigmata, but his
 is almost as wirle as long, but this is not bone ont by his figure (pl. Lxi, 10), in which it is more than twice as long as wide. It is elear from his figures that the fifth legs have been drann withont dissection, so that a close comparisom with the mate. rial found here eamot be made. lant the position of the spines appears to be rather similar. The maxiliped is shom allat stromery comstructed in both, and the catuda! rani are very smilar. The size and proporlions are similar to those of Braty s
 specimens fomad here.

Lbatmes I'hilinni $18: 8$.

 first legs ; : presenco of sixth lags.
 segments are longer than widu, tho second segment rabred at an angle to the litst: Hee endopod does not have its somments bromened as in the lumath. In the first antema the pernultimate and antr-pembemate seements aro misully modifed with mone or less pronomed hooks.

 Momatel 1928.
 lugs, and the modifind first intennal. He does men illustrate the first leges of the wale. The male ol 'mbram was last in dissection, so that its complete stmeture is mot known, but brady (1915, pl, xiii) figures the first lage of both sexes. In his dawing the exate "pposite condition to that found here appars to be the case. The makes no refereme to the differmee between the finst legs of mate and female. in the fext, and in view of his men infregment mistakes of such a hathre it is not mereasmable to assmme hat he has transposed the two appendages in his plate. Fur
 in which the first endopods are of the broal type. but dismisses the mate in at fow

 same type as has bexem tomb in the matas of the collection.

 lirst endopod). He shates that it is a lemald, but it is not appatmbly owigerons, and he does not illustrate the first antemmat The first legs are elondy of the type Fombl in the mates of other species. It is possible, Therefore, that he was hern dealing willa mate, aldongh the mosme shons monsth legs (bith these are easily
 have maforthatmy mot seen his deseription.

 of the sixth legs, is the harmones of the endupods of the first legs. For these
 ber tomen an weeprien to the rate.
 smaller than the origums lemale. Fimhermere it is almost deram that the male

 in the paited state, and in math case the fomate was abmet to monlt, and showed wo Hace of a skeletal pattern, whereas the mate was mature.

 has the: Eemale.

1. Lind segment of timst endoporl with a appendage
2. All appendages simple setare of equal thicdncess 3
Imer appendage a thicker seta or spine 4.
3. Setae of equal leugth comspiprumm Norman and sent 1905.Middle setal twice is lomg as other two . . . rose Monard 1936.
t. First antema 6-segmented5.
First antenna 7 - to 9 -scomented
First antenna 7 - to 9 -scomented .. ринритсти Philippi 1s:39.
4. End seqment of fifth leg with a setac simples sp.nov.End scement of filth leg with 6 setac . . secesphorum Monatr 1928.
5. The 2 imer appendares of finst cmedopod thick selan or monodified spines i.
These appendages modifiel spines, hatally lammate or seroll-like 9.
6. First antemal fi-segmented axiguzum A. scott 1909.First antema 7 -scemented 8.First imtman 8-swmented robustmm Clans 1889.
7. End segment of fiftlo leg with $\overline{\text { a }}$ seta. spectostm Thompson and Scott 1903.Find segment of filth leg with 6 setae
rubrain Brady 1915.
8. Finst autemai 7 -sermented 10 . .
First intema 8-sugmented 15.
9. Find segmont of lifth liex with I setape cimereum bitaly 1915. Fald sequent of fifth lerg with inclate 11.
axtending beyond base of first seta . 12.
Fiflla ker with outer branch of basal segmont half of end sogment, not rathingbase of first seta. imbomedimil A. scott 1909.
10. Basal serment of first antemmatial as long ayan as second segment. perpleszm Thompson and seot 1903.Basal segment of first antema aboul equal to second..13.
 fromilus an are "ntulatum Thompsont and sent 1903. Fostrum rombed; claw of maxilliped fom-fifths of end segment, ched only distally 14.
11. Terminal dans of first exomorl mot more than ? time end segment.
falcutmin A. scott 1909.Terminal clans of first exoporl at leas 5 times end segment. prorimum sponov.
Candal rami mot reaching end of qenital segment huwaizone Pestar 1935.
12. First antemat E-segmented; sctae of first condopord mmodified.

First antematasmented; 2 immer netme of first motopodmodified.
Note. The data for robustum (Itans 18s! have been taken foom Pesta (19:3n. p. 367) sinee 1 hatre not seen the origimal work.

Key to Pedidmum Mabes.

1. End sement of first emdopod with Bappendages $^{\text {and }}$ End negment of lirst condopod with 4 appendares 2.
․ All these appendages simple solar 3.
Imer appendige a spine 5.
 Imer seta thicker tham terminal sptate 4.
2. End segment of fifth leg with 5 setare onale Thompsom and Seott 190:\%. End serment of filth ley with 6 setae . merporeum Philippi 18:39.
\therefore. End segment of fifili leg with 5 setat 6 . End segusat of hilth leg with 6 setae . sacesphorum Monard 1928.
(i. Temminal setare of first conlopore unequal first antenna modified.
forciputum Monard 192s. Terminal setae of first andoporl equal ; first antema momodifed.
simplere sp.nov,
3. Two immer apines momotified . . . rubrum Brady 193.

Two imer spines modified, erodllike s.
8. First intemal 7 -segmented prorimum sponow. First antemas B-segmented . . . sperinsum Thompson and sentt 1903.
 all the avaliable perdence pointinge in that diecetion, white there is no positive widened againsi this interpertation. They ate, therefore, inctuded in this key.
 that the original deseription is somewhat indegmate.

Athough the deseription of the mate of satesphmram is ineomplete, I hare inchated it in the kes to the mathes sine there is some doubt in my mind whether the illustration of p. 1 fomate given by Momatal (1928, p. 315, fig. ix, 3) is not really that of the mate. The stember condition of the first andopod (ignoring the

Brathe 's illustration of the mate ot mbrum is eontined to the first lege and an explamed above 1 comsider that the first lef of male and femate have beon banspresed. The illustration does not make elatar the condition of its armatme, hat it appars to have 2 lateral setine and 2 immer simple spines on the codoporl.

Pelithmes shmelas sphov:

 N゙1, 1 females; X11, 1 specimen; XILI. 1 immatmere.

Fenale: Length $1 \cdot 56-1 \cdot 68 \mathrm{~mm}$. width ($0 \cdot 9$ ()-0. $0 \cdot 99 \mathrm{~mm}$. Body rounded in fromt, with rostrman projecting slighty towards the ventral surtace, invisible dore
 temna 6-segmented, sensiny filaments on third and fourth segments; seocond anfonna with basal swment incompletely divided, exopod 2 -segmented, attached at midule of bisal segment; munth parts mure or less nomal (fige. (f).

First legs with basal segment of chdopod expanded, temminal serment less so, bearing 2 terminal setae and 1 imer spine; less $-\frac{1}{}$ with the following seta formula:

	endopod.	exopod.
р.2.	1.2 .120.	1.1 .223.
p.3.	1.9 .220.	1.1 .323.
p.t.	1.2 .220.	1.1 .323.

Fifth legs with end serment indistincty separated from basal segment, 'longate, with setae and spines all inserted distally; like the other appendages, the fifth legs are strongly chitimized. (andal rami short, not visible dorsally.

Ejg. F. A, Peltidmm simptrex sponov. B, Pellidinm mosimum sp. now. C, Pollidima specin.

Mate: Length $1 \cdot 38 \mathrm{~mm}$. ; width $0 \cdot 69 \mathrm{~mm}$. Differs from female only in the smatler size of the first legs, with mone shender chtopods which are similarly amed, and in the possession of sixth legs. The male examined was obvionsly mature, and contaned as spematophore but the first antema is gnite mmodified and indistinguishable from that of the female. The fifthense identien in both sexes.

This speeies resembles arole in shape, bat has a simpler design in its skeletal patrerm, and differs in the tifth legs. The pathern is om the same general plan as in ovale, but difiers in the mintrior and posterior regions. The first antemate and
eud segments of the finst endopots are very similar to obule, and it is probably an Anstralian form of this species.

Fig. f. Peltinimm simpler sprone male and femate.

As alreaty stated, in view of the similarity of the first antemate in hoth seses of simplex and of its resemblane as a whote to ovale. it is assmmed that arate has been deseribed from the mate, since the first lens of that species show the nemal montifieation lomed in males.

Pelitheng proximum sp.mov.

 specimens; Xill ind XIII, 5 females (1 ovigerous) ; XlV, 4 females.

Hemale: Lamgh $1 \cdot 62-1.80$ mm., width $0.87-1.11 \mathrm{~mm}$. Body with prominent rostrum; vory stight dorsal erest on heat and thoracie seqments; segment bearing fifth legs fused with following segments; first antemat 7 -segmented: second antemat with distincty divided basal soment and long 2 -segmented exoporl; month parts normatl (fig. 7).

First hegs with hasal segmonts smb-rectamghar, endopod widened, end segment with 2 thin terminal setat and 2 amer selac, the latter strongly modilied ; seta

inner expansion and long outer branch. Candal sani short with long torminat setac.

Male: Lengih $1 \cdot 38$ mm. ; width 0.75 mu. Body as in fomale. First antemas. 7 -sumented, with usual semsory filaments and modified sequents; first logs with elongate second basal segment. endopod slender, with fro inner setac morified,

Fig. 7. Peltidinm procimum sp. nov., male and female.
seroll-like as in Parapoltidium fubinm (fig. 11) ; legs $2-4$ as in female; fifth leag with second outer spine much more strongly denticulate than in femate; sisth leys with 3 setare.

In the first and fitth legs this species resembles perplemm Thompson and Scott, hat the skeletal pattern (fig. 5, B) shows eretain differences, and the size of perplermm is muth sumaller (1.1 mmo).

Prifibum sperosem Thompsem and Seot 1903.
Peflidium sperinsum'Thomps, and Seott. 190:3, p. 27t, pl. siii. fix. 19-17.
P. mimutum A. Seott. 1909, p. 205, pl. lxv, fig. 16-20.

Ocemrance: 11.5 specimens; VII, is specimens; X, mmerous specimens; XT. 1 lemale: XIf, 4 females; XIIT, 1 female, 2 males: XTV, 6 fomales.

Distribuliou: Ceylon, washed from dragings hom pearl bank; Aru Islands, washed from dredgings from pearl banks, in 1.3 metres.

This species has hem identified with speriosum on accomt of the structure

In both the Cerlon material and the Anstralian specimens the design reaches a rather emplicated condition, and it is not certain whether all the longitndinal bars in the oripinal drawings are on the dorsal surface of whether some may be ventral in position but eomecting with those of the dorsal sulface, as is the case in by specimens. For this reason a elose eomparison is not possible. but in general hoth A. Scott's minutmm and the specincns fomd here agree with the origital drawings, and in the structure of the appendages all the are in very close agrement. In size minutum is somewhat smaller (0.8 mm.), whereas this material asrees with that ot Thompsom and seot, but the size of these Peltidids varies orer a consideable range, as has been shown.

Female : First antenna 7 -segmented, with the usual sensory filaments; seeond antemna with basal segment distinctly divided; mouth parts as usual. First legs with both segments of the endopod widened, end segment with 2 thin terminal setae and two lateral modified setae; seta formula differs from the usual:

$$
\begin{array}{ccc}
& \text { endopod. } & \text { exopod. } \\
\text { p.2. } & 1.2 .120 . & 1.1 .223 . \\
\text { p.3. } & 1.2 .320 . & 1.1 .323 . \\
\text { p.4. } & 1.2 .220 . & 1.1 .323 .
\end{array}
$$

Fifth legs with segments distinet, seeond outer seta strong and spine-like with several large dentieles.

Male: Length $1 \cdot 08-1.32 \mathrm{~mm}$., width $0.62-0.69 \mathrm{~mm}$. The male has not previously been deseribed. First antema 8 -segmented, modified as uswal; second antenna with basal segment divided, exopod long, 2 -segmented; mouth parts as in female. First legs with clongate basal segments and slender endopod, end seg.. ment with 2 long thin terminal setae and 2 imucr modified setac. Legs 2-4 with seta formula as in female; fifth legs similar to those of female, but second outer spine more strongly denticulate; sixth legs with $?$ setae.

Parapeltidium A. Seott 1909.
This genus was ereated for a single specimen taken in a vertical haul from 10 metres to the surface at night, while at anehor in Laiwni, Obi Major, Station 142 of the "Siboga" Expedition. An aleetric light was used in the net, and this is most probably a bottom living form.

The genus is retamed, for the present, for such species of Peltidium as show a distinct finsion of the two segments of the fifth legs, and therefore inchades seriottum 'Thompson and Scott (1903), on whose "remarkable" fifth legs the antlors commented at the time. Further points of similarity between the members of this genus, distinguishing them from Peltitium, are the noticeably flattened boty and the development of dorsal crests to the body segments in the mid-line. These are stated to be present in johnstomi (A. Seott, 1909, p. 212) though not shown in the figure (pl. lxy, fig. 1). In the ease of serratum they are illustrated (Thompson and Scott, 1903, pl. xiii, fig. 18) but not mentioned in the text. 'They are present and strikingly developed in both the speeies described here (fig. 9, 10). The males show the same sexual differences found in Peltidium.

There are, therefore, now 4 speeies to be ineluded in this genus: sorratum Thomp. and Se., johnstoni scott, cristutum and dubium spp.nov. The seeond of these, johnstoni, is presumably a male. Though deseribed as a female there are no specifically female characters deseribed or portrayed, whereas the first leg is obviously that of a male, and althongh smporting male claracters are lacking.
yet in Peftintimm also mates with mmontitiod first antemae are komen. The very
 teristic.

Thompson and sentt's species sorvatum is clearly a female: misholum is hem fasereibed from both sexcs. while dubium is known only as a mate.

As already shown the 5 -segmented first antema hore has no generic value. while the slender endopod of the first logs has no systematic significance.

Key to l'arapeltidien Females.

Key to tile Males.

1. First mathont with "terminal setae and 1 immer thirker seta 2 .
 IThium sp.urov.
2. Filth lex with 1 shom terminal spinc, 1 imene and ? onter spines and setan;

Pabareatidiom neretatem sponor.

 mest Istand, Western Anstralia, from weederovered rodks on the shom all batherst Proint, April, 1939, 1 male.

Female: Lemgth $1 \cdot 5-1 \cdot 05$ mom., width $1 \cdot 08-1 \cdot 11$ mm. Pudy flathon in

 with weak anterin and stronger pastrion hanstese bands io each sogment, but whont longitudinal comecting bats in the epincral expansions. First antema T-segmented, with semsory flaments on third and fourth segments; seomed antema: :-semented, with 2-seqmented exopod attached at distal end of basal joint ; month parts normal (fig. 9).

First leg with cmdopod much broalderd, befritus : mmodified terminal
 formola of lage 2-4:
indopert. exopout.

$$
\begin{array}{lll}
0.2 . & 1.2 .120 . & 1.1 .203 \\
1.3 . & 1.2 .20 & 1.1 .320 \\
1.4 . & 1.2 .200 . & 1.1 .32:
\end{array}
$$

 doawn to the same seale, but the mate Sth leg is drann at angnifieation equal to twiee that
 slightly smaller than thooe of the fermale; maxilat from fomale, mandible, maxillule, and maxilliped from male.

Fifth legs with segments lused, strongly chitinized, with thin margimal lamelta fringed with fine hairs. Candal rami clongate, with terminal and lateral setae.

Nale: Deseribed hom a singlespegmen taken in Western Austratia. Lengeth $1 \cdot 23 \mathrm{~mm}$, width 0.93 mm . Shape of hody and skeletal pattern as in temale, First antema 8-scemmede sisth and serenth shighty modifiod for graspinge, susory
filmments on thitd and fourth; other head appendages as in female-the maxilhule is somewhat reduced from the usmal Peltidiad condtion.

First legs with slender andopod, with : mmodified setae, the imer seta slighty thicker than the two terminal setat $;$ lers $0-1$ as in lemate; fifth leg searcely different from that of female.

That this species is distinct from Seot's is evident from the relatively simple design of the skeletal pattern, and the serater number of segments in the first antemate. It differs from seratum in the skeletal pattern, first endopod and fiath lens.

Parafeifidem detbem spmor.

Oceurrence: ${ }^{\top}, 1$ male.
Malle: Lemgth 1-29 mm. widla 0.81 mm . Bodly with rather irrognlar outline, rostrom asymmotrical, projecting; body sequents with large lateral expansions

 right side.
and dorsal erests (fig. 10). First antemat 8 -segmented, third and fourth with sensory filaments, sixth and seventh modified; second antemal with basal segment divided, exopor long, a-sexmented: umoth paris nommal (fig. 11).

First lexs with dongate hasal suments and slender endopod, bearing 2 thin terminal setace, and 2 modifiod seroll-likw imm sctane: legs 2-4 with the following seta formulal (right side) :
endopod. exopod.
p.2. 1.2.120. 1.1.22?.
p.3. 1.1.320. 1.1.323.
p.4. 1.2.220, 1.1.82:3.

The thim emdopod on the right side is somewhat amomal, hat the left third key was quite abnomal, the second and third segments of the andopod were fused and the exopod was 4 -segmented; fifth legs with seqments dist inctly fused. Candal rani long, with tongsetac, but invisible from abore.

Family TEGASTIDAE Sars 1904.

Thisas: Tes Nurman 190:3.
 in this collection (III), which I have been unable to identify with any of the known species. The dissection was, howeror. somewhat incomplete, and the species will not he described until more material bas heall ohtaned to chable a full sthdy to be made.

$$
\text { Famiby PORCELLIDIIDAE Sars, } 190 \text { t. }
$$

Ponsemamom ctans Tobio.

 Which is later mentiond in the text, but with me reteronec; matumately I have been mable to trace this species.

Of those listed ly Pesta he stata that purvilum and mentum Haller (1880)

 (1906) ; and colundum Litaly (1930) is fombably immature.

Desta (loc. cil.) makes a wew specis of fimbrimlam as described by Thompson

 diferences in the caudal rinui and the difiereme distritmenon.

The propertions of the segments of the first antenna as stated in the text by
 they dosely resemble the proportions funcoll ly Pesta from Clans, and also agree with Sars' drawing ($1911, \mathrm{pl}$. $\mathrm{lx}, \mathrm{a}, 1$). The position of the imber seta on the first endopod is probably due to fatuly observatiou since the print of attachment of
 /ore rit.. p. $: 377$, in which it is stated to be attacherl hasally). The position of the rib in the firth leg is merely a ghestion of the position in which the leare is drawne sine it is atwars more or less central, and forms the ande at which the two hatres
of the boat-shatud segment med. The ditherane in distrithtion has litite value.
 Archipelago and Australia.

But the caudal rami show eertain difteroness, as stated by Pesta, and even nore important, the postert-atoral projections from the arenital segment are distinety romded in fimbrintum Clans, and the fifth legs do not reach the ands "if these projections, whereas in 'Thompson and soot1's drawing the projections aro
 fimbriah of ot Thompson and sent maly be regaded as a distinet epeces, to whed the name scotti has been given hy Jesta.

 in lheir amature. Monad's varioty in the female shows a considerable difference in the propurtions of the wadal hani from thase of fimbriatum (length to width

 moides Clans (1889) (the original deseription of which I have not. secon), and stresses the resemblance betwem this species and fimbriatmm var. macerumm Monard. It is grobable, therelore, that devegremm is idention with hecanoides, amb this view is smpmed by empanison with the illustrations of this species wiven ly Norman and seotl (1900).

Below is a key to tho lemales of Poredliditu. from which are exchated those

 on the descriptions given ly Braty (1880) and Nomam and seott (1906) resucerively.

Ker to bonchamman femabis.

?. Projections from erental segment rearhine ent of anal serment but not to cond of tatudal rami

B. Callal rami rectamquar, tromane. t. Cindal rami hapering, puinted or rounded 5.
4. Projections from genital seoment with mavo onter marwin: candal rami [ipped with 4 shor spines ant 1 seta . . Lecemuides Clatns 1889. Projections from genital semment with wheave onter matgin: caudal rami lipperl with setie finly srolli Pestal 1935.
万. Projections from pental segment reaching middle of camdal rami.
"1.
Projections from wenital semment extonding anly shightly beyond anal 4egmont
6. Cambal rami prriform, taperimg distally \qquad 7.

Caudal man sub-rectangular proximally, onter marqin rounded distally 8.
7. Candal rami each lipped with a single spine, without other armature.
tenmicumer Clatus 1860. Candal man tipped with a single seta, and will 4 onter and 2 dorsal setae.

> brevictulutum Thomp. and Scot 1903.
8. First antema 6-seqmented .. rutanu Thompsom and Scott 190%. First antenna 7 -segmented affine Qnidor 1906.
9. Fifth legs extending romd candal rami, overtapping posterionty.
inlervatum (: M. Thompson 1883.
Fifth legs not meeting behind candal rami
. .

$$
10 .
$$

10. Body lagith to width as : : 2 fimbriutum Claus 186:3.

Boly length to widtı as 2 : 1 . . Julvum (i . M. Thompson 188:\%.
11. Caudal sami as long is wide australe Brady 1910.

Candal rami wider than boner . . . Fhuroti Qnitor 1906.
Porechaidumpimbelatym Olams 1863.
Occurence: XII, 1 female.
Distribution: British Lshes, Noway, Mediterranean.
A single specimen, an origerous female, was fomm in this collection, which showed the typical featmes of this specios as deseribed and illnstrated by surs

 Thompson.
(1911). The lateral incisions in the expansions from the enental segment (fig. 1?, Dr) are somewhat deeper than is shown by sams, but there is litede dombe that it identical with Clats' species. Lemath 0.96 mm . width $0 \cdot 60 \mathrm{~mm}$.

Poreehming munua (i, M. Thomprom 188:3.
Ocenrenes: IX, 1 femate.
Distribution: Otago and Lyttleton Harbours, New Zealand.
This single speeimen, which was mot ovegerous and may not have heen mathere, is almost cerambe idention with that describer by Thompsom. Ife states that it is "hatdy more than hate as long as broad"; hais specimen was shoghty narower. "Anterior antemate vers short not hali" he widh of the borly." "Candal segments quadrate, ciliated at the extremity: The size of his specimen. howerex,
 probably minnortamt. Apart from the umsmal shape, the most striking resem-
 reach the cond of the basal segment (fix. 12). The absence of an inner seta from the
 requeded as important sine it is easily wertooked.

Seta formala for leag 2-4:

$$
\begin{aligned}
& \text { 1... 1.2.1こ1. 1.1.29:3. } \\
& \text { p.3. 1.2.2el. 1.1. } \because 2: \% \\
& \text { 1r.t. 1.1.1•1. 1.1. } 2=
\end{aligned}
$$

Ocembence: XI, 1 ovigerons lemale.
Distribution: Suc\% Canal, Cevtun, Mahtives, and haceadives.
This species was originally described bem Cerlow, and hator deseribed hy
 culntum is identical with this as statal bex Gurner (192th). 'The single ovirerons fenalle taken here is somewhat laree than the type; it is intermediate in borly proportions betwen the tepe and Wolfenden's form, and lacks the tuberentate exoskecton. Length 1.08 mm., width 0.78 mm . The setil formala for legs $2-1$ is as infuloum above.

Pobeblhmean autrale Brady 1910.
 Distribution: Kergnelen Istame.
The single female kakn with the mate allached, was unfortmately inmather,

C.R. q
P. $2 \sigma^{\circ}$
En.

 Hosome ate drawn in veltral view.
is fomed atatach to immatme females. while the latter is motare than the male, whereas the adult female is alway lager than the mate. Unlike the Peltidids. however, when the sexes patir the mate is attached to the fifth legs of the fenale by means of its stomgry mehensile first antemate, so that they are armaged in fondem. In the Peltidiods the mate chasps the femate aromut the eephatosome, or between
that and the firs free thoracie segment, ly means of its powerful maxillipeds. In both cases, where paided mimats have brom taken, the femate wats immatme and abont to moult into the adult condition, while the mate was lully mature.

Althogh the female was immatme it could be identified with Brady's species, and the mate agrees well with his drawing as far as eomparison could be made. Since his description is not very full, the specimens taken here are fully illustrated.

Length $0 \cdot 60$ mun., width $0 \cdot 45$ mun., both specimens the sanne size. The dorsal sur tace of the male is strongly tuberculate.

$$
\begin{gathered}
\text { Famhy TlSBIDAE (Sars) } 1904 . \\
\text { Machamone Brady } 188: 3 .
\end{gathered}
$$

Lang (1936b) in a revision of this grems has concluded that the gems Psat mathe Philippi is identical with Machatopres, and since the older uame is preoempied, Brady's name must stand. He gives a key to the species, from which ouly sarsi Brady 1910 is exchuded. Sime then he has described amother species, antarelicus Lang (1936es).

Two species ocened in this eollection.

> Machamond intermedus sphov.

Ocenrence: 1λ, several specinens; X, 1 femate, 1 yonng ; XI, 4 ovigerous females, 4 yomg ; XIL, 4 females (3 ovigerous), 2 males.

Female: Lengy $0 \cdot 8+$ man. Finst antemta 9 -segmented; second antenna with 4-segmented exopod, of which the third segment is the shortest; mouth parts more
 in phumesen (Brady), thongh to a less extent. Sola formota of legs 2-4:

$$
\begin{array}{lrr}
& \text { endopod. } & \text { exopod. } \\
\text { p.2. } & 1.2 .221 . & 1.1 .223 . \\
\text { p.3. } & 1.2 .321 . & 1.1 .323 \\
\text { p.t. } & 1.2 .221 . & 1.1 .323 .
\end{array}
$$

Fithlugs verymuch as in the tepe species, candial rami as in plumost. The genital segment is partiall! divided, vontmally and laterally.

Male: Lempla 0.66 mm . The mate differs form the femate only in the first antemate, which are s-regmented, and fifth and sixth legs.

It is with some hesitation that this spectes is separated from phmoste. Which has been raleseribed by Lang (1934). A eomparison with the orginal and with Lang's dexcription shows several points of difference. Firstly in the proportions of the segments of the first antruna, in which it also difters from longicated
(Phitippi, 1810). The exopod of the second antenta lacks setac on the second and thied segments ; the mamlible palp is different trom that of Philippi's species. One of the distinguishing chatacters of Braty's species, aceording to Lang, is the swollen middle segment of the first exopod. In intermedius this segment is swollen but to a much smather extent, the swedling being restricted to that portion proximat

 tip, and is aceombtanied by at mandible in sith; the drawing of the maxillale is taken from the male. The genital area of the female was drawn as sech through the arosome from the dorsal suldface.
to the attachment of the sota. The fifth les is very simitar in all three speeies, and the eandal rami show ouly slight differences trom those of plemosen (ef. Lang, hoce (it., p. 19). The male differs liom plemoser in the first antemnat and filth and sixth legs.

 the filth legs were losi dhaine dissedions, and without these it is useless to deseribe the species.

Family THALESTRIDAE Sars 1905.

Lang (1936ic) has recently revised this family, and gives keys to the lamily and genera. He divides the fanily into tour sub-families, chiefly on the sexual characters.

Sub-family Dactylopodinae Lang 1936.

Eubautilorus A. Scott 1909.

This genus contains theerspecies, which are diseussed by Lang (loc. cit. p. 35).

Eubagtimous australis sphor.

Occurrence: $1 \mathrm{X}, \underline{2}$ females; XII, 1 femalo; XIV, 1 female.
Female: Length 1-26-1.38 mm. Body comparatively slender, the wosome forming more than hall the total lengh. Wist antemal 9-segmented; rostrmm prominent, ronuded, mobile-not always visible dorsatly; second antenna with exopod distinctly ${ }^{2}$-sermented; month pats showing greater development than in

Fig. 15. Eudactylopus austratis sp. nov., female.
type species (fig. 15). Einst lows like those of robustus (Clans. 1863) ; legs 2-4 with seta formmb:

	milopod.	exopod.
p.2.	1.2 .921.	1.1 .229.
p.3.	1.9 .321.	1.1 .303.
1.4.	1.1 .221.	1.1 .323.

Fifth legs large, extembing to the middle of the post-genital semment, hasal seg-
 as long.

Male: Tinknown.

 sequents logethers. At the same bime the body is relatively math mome slender flan in momstus. While the fifin legs ane long, as in robustus. their segments are of a shater quite different from those of robustus, and ther extend mo furthe than the midfle of the post-genital segment, whereas in robustus they reach at least to
 mately the same position as in onslonlis, but are of an entioply different shate. The
 robustas and from sportabtis (Brian, 1993).

Sub-family Thaiestrinae Lang 1936.

PHymavtalestris Sars 1905.
According to Tang (op. ril., F. fi, the gemms contans: species, with a possible fontht.

$$
\text { 'mythothabhimbis Mrsis (Chats) } 186 \% \text {. }
$$

Oechrmence: XIII, 2 females (1 ovigerons).
 Ceylon, Ohi Tslands.

The fwo females in this collection show only small diferenees from the type. 'The size is somewhat smatler, $1 \cdot 1 \mathrm{~mm}$. insthad of $1 \cdot 4 \mathrm{~mm}$, and the end segment of the second exopod has only 2 innor watac instead of 3 as shown by Sats (1971: pl. Isxi). Norpover, the immer seta un the hasal segment of the fifth leg is relatively Gosere to the termanall setac, amd the secoud onter seta of the distal segment is not differentiated as a spine, but this and the hind sela are shophty stomger than the

spines. There secms to be a certan amome of variation in the fifth logs of this species (elf. Sars 1911, pl. Lxxi, and Monard 1!28, fig. wiii. 1). The Western Australian form agrees with that from Sellick Refi in the spond exopod, hat the imner seta on the basal segment of the fifth lexe is missing.

Family DIOSACCIDAF. Sars 1906.

In eonjunction with the present work I have made a revision of this famidy, dealing in particular wifh the gems. Amphiosens and its elosely-reated gencea.

This revisiou will be published separately. It need only be noted here tirstly. that Gurney's (1927b) gemus Amphioscopsis is retained, but has bementarged to include a number of related forms, and, secondly, that the dehilis forms and ree lated species are placed in a new gems Amphitssenidrs.

A short definition of this new wems is wiven in the appropriate plate.
Amproascopses (immey 1927b.

Ammascorsis 1.0ngres spmov.

Oecurrence: VII, 1 female, X, itmales (4 ovirerous), 2 males; XIIT, 2 females (1 ovigerons).

Female: Lenuth $0.93-1 \cdot 0.5 \mathrm{~mm}$. Rostrum round anteriorly, with 1 seta on each side; first antemat 8-sementen: axopot of second antema 3 -scemented. middle segment with sotia ; first lews with very lomg whopod and large middle segment in expod, typical of the penns; logs -4 also typieal, with the following seta formula :

$$
\begin{array}{ccc}
& \text { undopod. } & \text { exopod. } \\
\text { p.2. } & 1.2 .121 . & 1.1 .223 . \\
\text { p.3. } & 1.2 .321 . & 1.1 .323 . \\
\text { p.4. } & 1.1 .292 . & 1.1 .323 .
\end{array}
$$

Fifth lag with distal segment mearly as wide an long, bearing 6 setac, hasal expan sion with 5 setac. Candal rami as wide as longe, setae umondified.

Male: Length $0 \cdot 90-0.96 \mathrm{~mm}$. Differs from fuald only in the usual way. Basis of first endopod with lange inner spine, which is strongly developed and eurved; end segmonts of first endopod ratively longer than in female; second endopod modified as nsual, with the spines strongly developed. Filth legs with basal spegments of opposite sides mited in midthen and wach bearing 2 small spimes ; distal segments with 6 setae $(2,1,3)$.

This species shows considerable resembance to lognomis Grandori, as illustrated by Brian (1908). It dilfors in the very long first cutopod, with its short ent
seqments. aud in the second cndopod of the male. Other species of Amphiuscopsis with very lone first endopords ancesesplatus, lemuirulus, gracilis, latifolius, minwhs, degyptios. phyllopus, havelochit, han!ulensis, and hirsutus. It differs from

Fig. 16. Amphenscopsis tongipes sp. nov., mato and female.
the first two in the shape of the fifth legs, and from these and aracilis in having: inmer setae on the cud segment of the third exopod; from latifolius and the last 5 species in the dirst exopod, med from mimulus in the fifth leng and mate second endopol.

Ampuastopsts atstrabs sp.nov.
Oecmrence: XIIT, 4 females, 1 mate.
Fenale : Length 0-75-0.93 mon. Rostrum triangular, pointed. without laterat
 antenna :3segmented, midde segment withom seta; first legs of Amphiascopsid trepe but endopod not ireatly elongated now vers slender ; legs 2 - 4 with the usbal seta formula for the armas. i.e exactly as in lumgipes (above); fifth leges with basal

first lers, catdial rami and rostrom. In sevemal respects, particularly in the proportions of the first endopod, it resembles aftenuatus (Sars 1906) bat differs in the elearly :-segmented exopod of the second antemat, the relatively wider first endopod, and in the shape and armature of the fith legs. The male differs from Hhat of allemuthes, which has ben deseribed by Wison (1932. p. 218). in the first abd second legs.

Amphiascompes gen mov.

The following two characters serve to define this gems, which is composed of the debilis g'ontp of Imphiaseus sens. let., with additions.

1: Midale segments of second and third matoporls each with 1 imner seta.
2. Middle segment of first exopod withont inner seta, end sument with only. 4 setad and/or spines.

For the full deseription of the wems and list of specins refarence will have to be made to the text of the revision which it is hepert will he pmhlished durime $19+\mathrm{t}$.

Ampmasomes intermintit (Willey) I!日in.

Distribution: Jemmuda.

Fig. 1s. Amphiasoroidrs intormiatus (Willey), fenale.
In $19: 5$ (p. 6f) Willey described a spectes of .1 mphinseus from Bermmda, which was close 10. A. drbilis (Giestrechat) and which he mamed subdrbitis; at the same time he found a varicte (intermixtm) which differed only in the shape of the fifth leg. The has mot ithostrated his speries very fully and it is not known to what
extent subdebilis departs from debilis, except in the seta fomma, fifth leg, and candal rami. The spere ies fomd here has the distal segment of the fifth lese indisdinguishable fiom that of his varicty, while the seta formolat for legs $2-4$ also agrees with suhtratis. In the propertions of the segments of the first endopot. however: it difters trom drlifis to a cortain extent, as doss also the rosirm, and failing information to the contrary it must be assmod that sublebitis agrees with dotuis in these respects. It is macorain what ralue shonld be aseribed to the proportions
 colighten 1 ss . The size of swbdebitis is given as $0 \cdot 017 \mathrm{mmo}$, that of the variely as 0.69 mm . - the examples font here measured 10.90 mm .

In view of the considerable differnco in size and its wide distribution I have
 debilis, as Wille's choice of name implies.

Julysus birian, 1927.

The gemms was pearded be seott as a Thatestrid, rotated to Datylopodelle. which it resembles in shape and in the relatively large basal serment of the first endopod. It is, howerer, asstated by Lang (1936e, p. 18) charty a Diosaceid, and belongs to the Diosafimar. Inlysus, which I regart as symongmous with Tydimumatle, was rorrectly placed in the Dinsaredar ly its amthor, though both (iur-

 (loc. cit.) regards as symmomous with Datylopodella. It is of interest to mote

 established.

The generic diagnosis given herent (1!0!), p. 216) suffices for the two species hitherto described and for the new spectes described below. These are lyprice A. Scott 1909; rufus (Brian) 1927 ; and robusta sp.nov.

Key to the Females.

 wide Iypied A. Scott 1909. These seqments short and stout, nombe 1 ham half as long again as wide . 2.

r"tus (Brian) 1927.
Second styment of first imblomal withon spitue.
.. robuste sp.nov.

Tipmanklfa bobecta sp.nov.

Occurrence: IX, 1 female, ovigerons; XIV, 1 male.
Female: Length 0.78 mm . (anterior portion 0.54 , 11rosome 0.24 mm .) : greatest width 0.36 mm . Body wide anteriorly, tapering gradnally posteriorly.

Fig. 19. Tydemanella robusta np. nor., mate and female.
Rostrum large, not abwys visible from above owing to envatme of boly. Urosome wide anteriorly and tapering strongly to callal rami, segments strongly chitinized; genial segment imperfectly divided. Camdal rami at least as wide as long. with 1 lomg terminal seta as long as the anterior portion of the body, 1 smatl seta. athl 1 spine.

First antema s-segmented, the hasal beqments shot and strong! built, amd bearimen sensory filaments on the third and foneth spegments; distal portion with : short subequal seguents and if long end seqment; second antenna 2 -segmented, with a small 1 -segmented exopod attached at middte of hasal semmont, bearing 1
 ond segm"nt with 4 setae; maxilnhe simply constructed, with 1 lohe; maxilla not seen; maxiliped normal.

First lex with 3 -segmented exopod, without immer setae, and ouly ? setate on

madopoil. exopod.

(1) p.2.	1.1 .121.	0.1 .222.
p.3.	1.2 .221.	0.1 .329.
p.4.	1.1 .221.	0.1 .322.

Fifth key with wide basal segment hearing is setare, an oval distal semmen with 6 sectae. The fomate carries 2 pere-sates, each with a fow large eqges.
 as in lemalr, but urosome in-swmented. Wirst antemais-segmented, slightly motified; second autemas and month pate as in female; legs 1 -t is in femate, bute seeond endopod modified, "-segmented, end segment with 1 lateral and 's terominal setate, and a pair of spines inserted dose togethers. Basal segment of first legs with latge, strong. inner spine. Fith legs with 2 strong spines on basal segmont and 4 setae on distal segmenl: sixth leers with 1 large spine and 2 setare.

In the shape of the body this speries atrees with the descriptims given for
 first antennat closely resembles that ut rufus, with the exerption of the spine on the second segment in the latider. The secomed antenna is very like that of rufus, thongh with 2 temmat setate on the expond in place of 1 ; in typure the exoper is very long and slender, and has a single terminal seta. The matulible palp difters from typira in the structure of the ghathonase. The mouth parts of rufus are neither described nor illustrated by Brian except for the maxilliped which is stated to be rather robnst. Gurney (1927b, p. 505) describes the mandible palp as "apparenty a long, stender, mbamelnd tod with three sutae", which would

[^0]closely resemble the condition in the species deseribed here. His illustration (fig. $133, \mathrm{D})$ of the maxilliped shows similarity with that of mobusta. In typiea the maxilliped is stenter, differing fimm both mifus and robusta. The first leys agree in general with both species. but the mapod difters from typice in the rolatively shorter terminal segment armed with 2 spiues and 1 seta. In rufus the basall seg-
 exnport in mousta differs from the others in having only : appendages on the end segment (4 in the male, which has an additional small onter spine) and 110 inmer seta on the midde sument. Lens $2-+$ in l!mica are stated to be "nearly similan to those of Dactylopodilu". Which difers hom that lomm here; in rulus they are deseribed as being more or less like other Diosaceids.

The fifth lege are like lypicu, but with setae instead of spines on the basal

 are naknown.
 the stmesture of the second embond, thongh the shape ot the end segment is not so strongly monlifed, ame the immer spine on the basigned of the first logs is not enlargerl as it in in rufur, but resembles that an the temale.

Hanhly CANTHOCAMPTHDAE Sars 1906. Mesinchea Bueck, 1869 .
 ? Mesochma ificmalea (Ulams) 186%.

Vecmrence: IX, 1 female.
Distributiou: Norway, Jelipoland, Bermmeli, Woods Hole, Aleditemanean, Suez Camal.

The sumgle specimen, a femali, ocenming in this eolledion measured 0.27 mm , whereas previous records have given its size as from $0 \cdot 33-0 \cdot 40 \mathrm{~mm}$. The strueture of the first antema conld no be made ont cleaty in my preparation, neither Was the exoport of the second antenna visible. It appears to difter in the n momber of selate on the end segment of the firth ben, having only f , and the imer seta on the basal segment of the fiest endopod is inserted mid-way atong the margin instead of being shaghty nemer the base. Sinee there is only the single specimen, and that not fully examined, it has been placed for the present, with Clans' pygmate. which it very closely approaches.

Ifintil quite recently this gemus has been regarded as a Cletodid, that it has been established by Lang (1936 d) that it belongs to the Conhocamptitue (loc. cil., p. 451). Fonw species have been deseribed: lincoris (Olius) 1866 ; propinquas Monard 1926a; wallini Lang 1934; and mujor Klie 1939.

The last of these has, so lim, been deseribed only in a preliminary notice, without illustrations.

Orthopsimars motosets sp.uov.

Oecurrence: X , 2 females.
Female : Lengith 0.81 man. Lor specimen in contracted condition, 1.05 mm . for specimen with boty segments extembed. Borly of msual shape, tapering slighty. posteriorly; rostrim promineme, slighty down-turned at extremity; anal operculum and portions of anal semment strongly dentientate; catudal rami with similar donticulate fringes to inner and outer margins.

Head appendages more or less momal, lisst abtemate with the spur on the secomt segment slights. different on right and left sides (see fig. 21) ; end segment of mandible palp with 'a setae.

First legs with endopod segments subernal, hasal segment without imner seta; legs 2-4 without imner setae on exopods, but tha leg has a lew imer hairs; seta formula :

Fig. 21. Orthopsyithns rughesws sp. nor., fomate.
On the exopod of these legs the terminal seta which ustally aceompanies the spinc. and is reduced in linearis, is absent. The taminal seta un the thind mepord is reduced to a fine hair. 'The fifth legs resemble those of limetris rather than any other
 of the fifth legs distinct.

Male: Unknown.
This species resembles lincoris in the structure of the fifth logs (allowing for the segments to be distinct) but differs from it. in the cental rami. In this respecter it resembles ihe other thee species. It differs from propinguns in the first legs, cxopods of legs $2-4$, fifth leg's and candial rani ; uallimi has only 2 outer spines on exnpods 2-4, whereas here thereare:3. Withont illostrations it is diffient to compare this speceies with murner, but it would appear 10 differ in the first legs, which are assumed to be like those of lincoris. and certanly difiers in the maxillipeds.

Famby LAOPHONTidAE Sars 1907.

Lagrmonth Philippi 1840 .

 femate; $\mathcal{X} \mathrm{I}, 1$ timath, 1 mate; XIV. 1 wiseroms fomate.
 (anal, Ceylon, Malay Archipedago, Kerguelen, Falkland Istands.
 widely distributed specias wore lound: they do not depart fiom the deseription given by Surs 1911.

Nate: Lengtla $0 \cdot 90 \mathrm{~mm}$.

Ocemmence: $1 \mathcal{X}, 1$ male.

 first leg's ver slender, exoporl 2 -segmented, andopod with very shord end segment, terminal claw with shall aceessory seta; second legs apparently without endopod, but this may have been lost in dissection ; thior entopod with spine-tike process at onter corner of middes segment ; seta formula :

$$
\begin{array}{ccc}
& \text { entoperl. } & \text { expond. } \\
\text { p.2. } & - & 0.0 .022 \\
\text { p.3. } & 1.1 .110 . & 0.0 .012 \\
\text { p.4. } & 0.120 . & 0.0 .112 .
\end{array}
$$

Fribh legs with wedl developed end segment, bearing in setale, no inmer basal axpansion. Cantal rami lithe longer than wide, with an inner basal tuft of finc hat's
projecting laterally, giving a somewhat indistinct ontline to the bases of the rami, and also imparting a sumerficial resemblance to bulbifor(t. Caudal setae longer than the whole body:

 kuown, but has fewer setale on the swimming legs. The fith leas and candal ramb ate remakably alike in both. It semos possible that rodiaco may be the mate of bulbifern--thesimilarity extends to severat points, but it will be necessary for them to be daken together for such a relationship to be established. In some respects ako this new species resombles bulbifor, but there are no spmes on the first antemae, and the candal rami do not project inwards.

l'amily CEYLONiELL.idAE A. Scott.

(Eflonnhalal amata (Clims).

Ceylowta "crulutu Thompson and seot 190:3, p. 265.
('eylomier armatu A. Scot 1909. p. 2e7.
Ceylonim aruleatn var. ulriatien Brian 192?, p. 180.
Cegloniclla actleata Wilson 1924 (1925), p. 14.
Lomriniu armatn Wilson 1924 (192.5), p. 15.

Ceylonia armalu Gurney 1927b, p. 567.
Ceylomiella armata var. artriatica brian 19:88, p. 2:3.
Ceyloniella amata Willey 1930 , p. 111.
Coyloniella armata Monard 1935a, p. 84.
Ceylonielle armata Monard 1937, p. 8\%.
This copepod was first described as Jurimio armeln by Claus (1866) from the Mediterranean. In 190:3 Thompson and Scott deseribed a copepod Ceylonia

Fig. ㄹ.3. Ceylomictlo armala (Clank), malle and fomale.
ar:uleuth which A. Scoth (1909) showed to be identical with Clans' Jurimin armatu, but since Chus' generic nane was preocenpied Thompson and Acott's generie name was retanced. In $192+$ Wilson shoved that Ceglonit also was preocenpied, and fonamed Thompson and Heott's genus Ceylomiflt; at the same time he changed Jurinin to Lourimin without regard to its synonymy with Ceylonia. Ceglomiclla stands as the correct reneric name.

Distribution : Mediterrancan, suc\% Comal, Ceylon, Malay Archipelago.
Female: Length 0.93-1.32 mm.
Male: Length $1 \cdot 02-1 \cdot 23 \mathrm{~mm}$. Despite eertain minor differences when compared with Thompson and Scott's figures there can be no doubt that the specimens fomm here belong to this species. The candal rami of the female illustrated show pecmliar setae, which were not fomm in the male, nor in other specimens. The female fifth lear, moreover, lacks one seta on the distal segment, in comparison with the Ceylon material, thus contorming to Claus' and Gumer's descriptions. The seta formula lor both sexes is identical, except for the male third endopod which is motified:

$$
\begin{array}{ccc}
& \text { endopot. } & \text { exopod. } \\
\text { p.2. } & 1.311 . & 0.1 .12 \% \\
\text { p.3. } & 1.321 . & 0.1 .123 . \\
\text { p.s. } & 1.211 . & 0.1 .12 \% .
\end{array}
$$

A single specimen of what may prove to be a new species oechryed in the collection (also lrom selliek Reef), but since it is represented by a nom-ovigerons female, somewhat smaller than the other specimens, it is possibly only an immature specimen.

$$
\text { Family METIDAE Sars } 1911 .
$$

Metis Philippi 184:

This geluns has recently been revised by stener ($19: 37$), who includes a key to the species.

$$
\text { Merts Joesseaumer (Richard) } 1890 .
$$

Ocemrates: A considemble number of specimens oecurred in the eollections From Sethick Reef, both sexes being represented.

Distribution: Aceording to stener (19:37) it mages from the North Atlantic to the Pacilis: (for details sce Stener, op. cit.).

There is mothing to disthanish the specimens found here from those found dsewhere. Thedepth of pigmentation appars to be a variable feature of the members ol this grans. Sipecimens from South Australia were all colourless, whereas others tiaken from Rotnest Island, Westem Australia, were bright red when capiured. The pignem is destroted on preservation in dilute formalin.

As in the case of Gumer's specimens (1927b, p. 571) the long candal seta is longer than the whole body.

LITERATURE.

Relerences marked (\%) have not bem emmalted.
"Baird, W. (1845) : Trans. Berwich N'at. Club, ii, p. 155.
*Bocek, A. (1864) : Vill. Selsti. Forh., Christionia.
Bmoly, G. S. (1880) : Mon, British Copepoda, ii (Ray Society, London).
Brady, (G. S. (1883) : Challonger Reporls. Zool., viii.
Braty, (\%.s. (1899) : Trems. Zool. Stoce, Lomdom, xv, pp. 31-54.
Brady: G. S. (1910) : Deutsche Südpoler-EErped., xi, Zool., iii, pp. 497-593.
Brads, G. S. (1915) : An". Durbet ILus., i, pp. 134-146.
Brady, (f. S. and Robertsom, D. (187:3) : Amu. May. N'll. Hist. (4), xii, ple. 1:2$1+2$.
Brian, A. (192:) : Momit, Zool. Alul., xxxiv, pp. 12(i-1:3
Brian, A. (1:27) : l'oll. Mus. Kool Inol. comp. limin, Gen. (2), vii, No. 9.
Brian, A. (1928) : Boll, Ilns. Zool. Inal. comp. I'min. (ínl. (2), vii, No. 18.

Clans, C. (186:3) : Dis freilobenten Copepoden (Leipzig).

* (Jans, C. (1866) : Dje Copepoden Finura von Nizaa (Leipzig).
*Clats, C. (1859) : Copepodenstulicu. Die Peltidien.

* Czerniasski, V. (1868) : Verh. Versamml. Russ. N'uturf., Sl. D'ehershury, Iut. Zool., Copepocte, pp. 39-57.
"Goodsir, H. (1845) : Aun. Mug. Nul. Misl. (1), xvi.
Gurney, R. (1927a) : Trens. Zool. Soc. Lomelon, xxii, 1p. 17:3-177.
Gnrney, R. (19271) : Ibicl, xxii, pp. 451-577.
*Halter, G. (1879) : Zool. Anz., ii, pp. 178-180.
Haller, G. (1880) : Arch. f. Nalurg., Jah'g., xhvi, pp. 55-70.
Klic, W. (1939) : Kool. An\%, cxavi, pp. 22\%-226.
Lang, K. (19:34) : liungl. Fysiogr. Šallsk. Mandl., N.F', xty, An. 14.
Lang, K. (1933) : liungl. Fysiogr. Sillsk, Luml Forhemell., v, No. 9.
Lang, K. (1935a) :Ibid., No. 21.
Lang, K. (1936a) : Zool. Anz., exiii, pp. 174-17T.
Lang, K. (1936b) : Ibill., cxiv, pp. 3:-40.
Lang, K. (1986c) : Ibid. exp, pp. 152-156.
Lang, K. (19:36d) : Zool. Jahrb, sysl., Lxiiii, pp. 44.)-400.
Lamg, K. (19:38) : Swalish Amarc. Exped. (1901-1903), iii, :3.
Monard, A. (192t) : Bull. Soc. Zool. France, xlix, pp. 656-672.
Monard, A. (1926a) : Arch. Zool. exp.gen., Lxv, pp. 39-54.

Monard，A．（1928）：Ibid．，1xvii，pp．259－443．
Momard，A．（1934）：Rev．Zool．Bol．Africaines，xavi，fasc．． 1.
Monard，A．（19：5）：T＇rat．Slal．Biol．Roscoff，Fase，xiii．
Monard，A．（1935a）：Stal．Occamogr．Salummbon．Rall． 34.
Monard，A．（1936）：Bull．Trun．Stal．didequic．el de Peche．Castighimne，Alger．
Mometrd，A．（1957）：Ibid．
Monk，C．R．（1938）：Sciuce，Ixxxviii，p． 184.
Nicholls，A．G．（1985）：Iown．Mur．Biol．Assoc．，xx．pp．29－4．5．
＊Noman，A．M．（1868）：Brit．Assoc．Rops．pp．247－in6 and 34－345．
Nomban，A．M1．（1903）：Aun．May．Nat．Hist．（7），xi，pp．367－3699．
Norman，A．M．and Scot1，T．（1905）：Awh．Mat，Nul．Mist．（7）xv，pp．284－300．
Nomman，A．M．and Scott，＇T．（190（i）：The Crusticea of Devon and Cormwall （Wesley \＆Son，Loudon）．
I＇esta，O．（1935）：Zool．Ithmo．，syst．Rxvi，pp．36：3－979．

I＇hilippi，A．（1st0）：Ibid．，vi，pp．188－190．
Philippi，A．（1943）：Mbill，ix．
 Paris．

 （llarpacticoida）．（Bragen．）
Seot，A．（1909）：Sibogu－Lirperl．，Mon．xxixa，pp．1－：32：？（Lexden）．
Scolt，T．（18！4）：Trons．Linn．Soc．Lomdon，2nd sme．，vi，pp．1－161．
Seoll，＇T＇，（1912）：Trans．Rol！Soo．Eflin，xlviii，pp．521－699，

Stmer，A．（19：37）：Nol．Ist Rimog．Romigno，ii（8）．

Thompson，I．C．and Acott，A．（190：）Report on the Copeporla．Cevom Pearl Oyster Pisheries，Supp．Rep．Pt．1，No． 7 （Lomdom）．
Willey，A．（19：30）：Allu．Mng．Nat．IFist．（10）．vi，pp．81－11t．
Willey，A．（1535）：Am，Mag．Nill．Hist．（10），xv，pp．50－100．
Wilson，O．B．（192－4）：Pror．だ．s．Nott．Mルs．，Ixiv（1925）．
Wilsom，C．B．（1932）：Bull C．S．Nat．Mus．．No． 158.
Wolfonden，R，N．（1905a）：Kama and Geography of the Maldive and laceantive Archipelitroes．ii，Suppl．1．pp．989－1，010．

[^0]: (1) In the single femine at my disposal the and endopors were asymmetrical, the end sugment being imperfectly doveloped on one side. It is possible that there shond 1 w 2 setae on the mindle segment, as in infus (oft. Gurncy 1927b, p. 506).

